A Survival Guide to a PhD - Andrej Karpathy

I found this article on the Facebook of a professor. After reading through the whole content, I have learned some useful experience from the author. I quote some ideas here:

"There are very few people who make it to the top PhD programs. You’d be joining a group of a few hundred distinguished individuals in contrast to a few tens of thousands (?) that will join some company." (just personal opinion. Don't condemn :) )

"As a PhD student you’re your own boss. Want to sleep in today? Sure. Want to skip a day and go on a vacation? Sure. All that matters is your final output and no one will force you to clock in from 9am to 5pm. Of course, some advisers might be more or less flexible about it and some companies might be as well, but it’s a true first order statement." (just motivate myself)

"You will inevitably find yourself working very hard (especially before paper deadlines). You need to be okay with the suffering and have enough mental stamina and determination to deal with the pressure. At some points you will lose track of what day of the week it is and go on a diet of leftover food from the micro kitchens. You’ll sit exhausted and alone in the lab on a beautiful, sunny Saturday scrolling through Facebook pictures of your friends having fun on exotic trips, paid for by their 5-10x larger salaries. You will have to throw away 3 months of your work while somehow keeping your mental health intact...You’ll experience identity crises during which you’ll question your life decisions and wonder what you’re doing with so"me of the best years of your life." (sure! it is happening now)

" You will want to operate in the realm of your adviser’s interest. Some advisers may allow you to work on slightly tangential areas but you would not be taking full advantage of their knowledge and you are making them less likely to want to help you with your project or promote your work."

"If you aspire to improve something by 10% and work hard then you will. But if you aspire to improve it by 100% you are still quite likely to, but you will do it very differently."

"To make some of this discussion more concrete I wanted to use the example of how my own PhD unfolded. First, fun fact: my entire thesis is based on work I did in the last 1.5 years of my PhD. i.e. it took me quite a long time to wiggle around in the meta problem space and find a problem that I felt very excited to work on."

"Writing good papers is an essential survival skill of an academic (kind of like making fire for a caveman). In particular, it is very important to realize that papers are a specific thing: they look a certain way, they flow a certain way, they have a certain structure, language, and statistics that the other academics expect. It’s usually a painful exercise for me to look through some of my early PhD paper drafts because they are quite terrible." (try to improve now)

"Make sure to document all your code very well for yourself. I guarantee you that you will come back to your code base a few months later (e.g. to do a few more experiments for the camera ready version of the paper), and you will feel completely lost in it. I got into the habit of creating very thorough readme.txt files in all my repos (for my personal use) as notes to future self on how the code works, how to run it, etc."

"I might be a special case but I’m always a fan of non-formulaic talks that challenge conventions. For instance, I despise the outline slide. It makes the talk so boring, it’s like saying: “This movie is about a ring of power. In the first chapter we’ll see a hobbit come into possession of the ring. In the second we’ll see him travel to Mordor. In the third he’ll cast the ring into Mount Doom and destroy it. I will start with chapter 1” - Come on! I use outline slides for much longer talks to keep the audience anchored if they zone out (at 30min+ they inevitably will a few times), but it should be used sparingly." (experience myself)



Popular posts from this blog

FolkTrails: Interpreting Navigation Behavior in a Social Tagging System

[Talk Summary] Machine Learning and Privacy: Friends or Foes?

Collaborative Filtering in Social Tagging Systems Based on Joint Item-Tag Recommendations